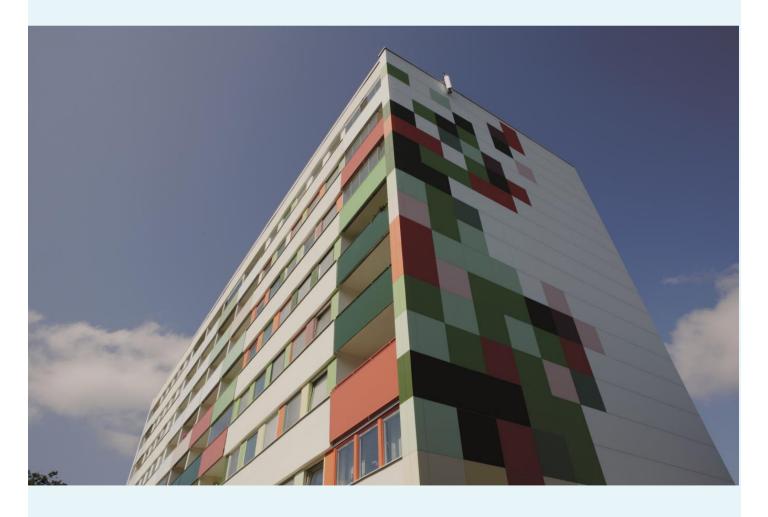


ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration Program operator Publisher Declaration number ECO EPD Ref.No. Issue date Steni AS
The Norwegian EPD Foundation
The Norwegian EPD Foundation
NEPD00097E Rev 1
00000084
01.02.2014

01.02.2019 (validity extended to 15.01.2021)


Steni Colour facade panel 6 mm thickness

Steni AS

Valid to

www.epd-norge.no

General information

Steni Colour facade panel 6 mm thickness

Product

Program holder

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo

Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD 0097E rev1

This declaration is based on Product Category Rules:

CEN Standard EN 15804 serve as core PCR Product category rules (PCR) of Building boards. NPCR 010

Declared unit:

1 m² of Steni Colour facade panel, 6 mm thickness.

Declared unit with option:

1 m² Steni Colour facade panel with a service life of 60 years.

Functional unit:

The environmental product declaration has been worked out by:

Torhildur Kristjansdottir SINTEF Building and infrastructure

Verification:

Independent verification of data and other environmental information has been carried out in accordance with ISO14025, 8.1.3.

externally 2

internally

Kari Sørnes, SINTEF Building and infrastructure (Independent verifier approved by EPD Norway)

Steni AS

Manufacturer

Owner of the declaration:

Steni AS

Contact person: Tor Unneberg
Phone: +47 33 15 56 00
e-mail: tor@steni.no

Place of production:

Lågendalsveien 2633, 3277 Stensholt, Norway

Management system:

ISO 9001:2008, Approval No00022

Org. No:

NO 944012044

Issue date

01.02.2014

Valid to

01.02.2019 (validity extended to 15.01.2021)

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a the building context

Year of study:

2013

Approved according to ISO14025, 8.1.4

Suem Fossdal

Dr. ing. Sverre Fossdal (Chairman of the Verification Group of EPD-Norway)

Declared unit:

1 m² of Steni colour facade panel 6 mm thickness.

Key environmental indicators	Unit	Cradle to gate
,		A1 - A3
Global warming	kg CO ₂ -eqv	17
Energy use	MJ	179
Dangerous substances	*	
Renewable energy	MJ	30
Non renewable energy	MJ	149

The product contains no substances from the REACH Candidate list or the Norwegian priority list

A4₁ Central warehous is the production site

Transport A4₁

Product

Product description:

Steni colour facade panel is an exterior wall cladding system. The panel comes with different colours, shapes and thickness. This EPD is based on 6 mm thickness.

Product specification

Materials	kg	%
Polyester	2,12	17 %
Filler	4,93	39 %
Chemical additives	0,06	0,5 %
Crushed stone	4,80	38 %
Fiber glass	0,50	4 %
Top colour - acrylic	0,11	1 %

Technical data:

The panel is 6 mm thick with av average weight of $12 \text{ kg}/\text{m}^2$. The panel comes in different sizes and shapes.

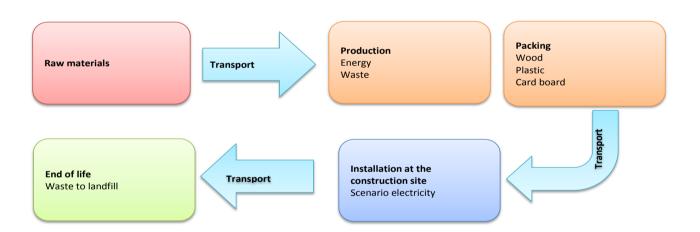
The panel has SINTEF Technical approval TG 2165.

Market:

Europe

Reference service life:

60 years


LCA: Calculation rules

Declared unit with option:

1 m² Steni colour facade panel with a service life of 60 years.

System boundary:

The analysis includes steps A1-A3, scenario for A4, A5, B2, C2 and C4 as shown in flow chart.

Data quality:

The data for the production is gathered from Steni and is of good quality. For background data the Ecoinvent database v.2.2 is used, and is considered to be representative.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house production is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
	%			consumption	(I/t)
Truck 16-32 tonne	50	Lorry (Euro 4)	300	l/tkm	

Additional information:

Transport to central warehouse in Norway is set to 0 km since the central warehouse is at the production location.

Installation in the building (A5)

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	0,05
Other energy carriers	MJ	
Material loss	kg	
Output materials from waste treatment	kg	
Dust in the air	kg	

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	
Collected as mixed construction waste	kg	
Reuse	kg	
Recycling	kg	
Energy recovery	kg	
To landfill	kg	12

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
	%			consumption	(I/t)
Truck 16-32 tonne	50	Lorry (Euro 4)	50	l/tkm	

LCA: Results

The results from the EPD show that the largest contribution of the environmental impact is the production of raw materials, A1. Transport, A2, is a significant share of the environmental load.

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Prod	roduct stage			Construction nstallation stage			Use stage				En	d of life	e stage		
Paw materials	ומא וומנכומוס	Transport	Manufacturing	Transport	Construction installation stage	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
А	.1	A2	А3	A4	A5	B1	B2	ВЗ	B4	B5	В6	B7	C1	C2	СЗ	C4
>	(Χ	Χ	Х	Х	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MND	Χ	MND	Х

Beyond the system boundaries
Reuse-Recovery- Recycling-potential
D
MND

Environment	Environmental impact										
Parameter	A1	A2	A3	A1-A3	A4	A5	C2	C4			
GWP	13,77	2,10	0,96	16,84	0,60	3,00E-03	0,10	0,64			
ODP	6,69E-07	3,29E-07	4,35E-07	1,43E-06	9,42E-08	9,89E-11	1,57E-08	3,21E-08			
POCP	1,77E-03	3,01E-04	4,16E-03	6,23E-03	7,26E-05	2,85E-07	1,21E-05	1,25E-04			
AP	3,77E-02	9,48E-03	4,00E-03	5,12E-02	2,29E-03	4,74E-06	3,81E-04	2,05E-03			
EP	1,46E-02	2,24E-03	2,55E-03	1,94E-02	6,02E-04	1,81E-06	1,00E-04	3,21E-02			
ADPM	3,38E-05	3,92E-06	1,63E-06	3,94E-05	1,15E-06	6,39E-10	1,91E-07	1,55E-07			
ADPE	45,66	2,91E-02	12,37	58,06	8,17E-03	2,34E-04	1,36E-03	0,91			

GWP Global warming potential (kg CO₂-eqv.); **ODP** Depletion potential of the stratospheric ozone layer (kg CFC11-eqv.); **POCP** Formation potential of tropospheric photochemical oxidants (kg C₂H₄-eqv.); **AP** Acidification potential of land and water (kg SO₂-eqv.); **EP** Eutrophication potential (kg PO₄³-eqv.); **ADPM** Abiotic depletion potential for non fossil resources (kg Sb -eqv.); **ADPE** Abiotic depletion potential for fossil resources (MJ)

Resource use									
Parameter	A1	A2	A3	A1-A3	A4	A5	C2	C4	
RPEE	12,31	0,45	17,49	30,25	0,13	0,18	0,02	0,05	
RPEM									
TPE	12,31	0,45	17,49	30,25	0,13	0,18	0,02	0,05	
NRPE	47,79	0,03	19,03	66,86	8,20E-03	2,34E-04	1,37E-03	0,95	
NRPM	82,10			82,10					
TRPE	129,89	0,03	19,03	148,96	8,20E-03	2,34E-04	1,37E-03	0,95	
SM									
RSF									
NRSF									
W	0,27	1,55E-02	3,83E-02	0,33	4,36E-03	4,32E-05	7,27E-04	3,50E-03	

RPEE Renewable primary energy resources used as energy carrier (MJ); RPEM Renewable primary energy resources used as raw materials (MJ); TPE Total use of renewable primary energy resources (MJ); NRPE Non renewable primary energy resources used as energy carrier (MJ); NRPM Non renewable primary energy resources used as materials (MJ); TRPE Total use of non renewable primary energy resources (MJ); SM Use of secondary materials (kg); RSF Use of renewable secondary fuels (MJ); NRSF Use of non renewable secondary fuels (MJ); W Use of net fresh water (m³)

End of life - Waste									
Parameter	A1	A2	A3	A1-A3	A4	A5	C2	C4	
HW	0,15			0,15					
NHW	0,88			0,88				12,00	
RW	0,01			0,01					

HW Hazardous waste disposed (kg); NHW Non hazardous waste disposed (kg), RW Radioactive waste disposed (kg)

End of life - Output flow									
Parameter	A1	A2	A3	A1-A3	A4	A5	C2	C4	
CR									
MR	0,10			0,10					
MER									
EEE									
ETE									

CR Components for reuse (kg); MR Materials for recycling (kg); MER Materials for energy recovery (kg); EEE Exported electric energy (MJ); ETE Exported thermal energy (MJ)

Reading example: $9.0 \text{ E}-03 = 9.0 \cdot 10^{-3} = 0.009$

Specific Norwegian requirements

Electricity

The electricity used in the Production phase (A3) at Stensholt, near Larvik in Norway is based on a factor of 39,2 grams CO₂ eq /kWh (Electricity, medium voltage, supply mix, Norway 2007-2011)

Greenhouse gas emissions: 11 kg CO₂ - eqv/MJ

Dangerous substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (of 01.02.2014) substances on the Norwegian Priority list (of.01.02.2014) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations.

Bibliography	
ISO 14025:2006	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
PCR:2007	Product category rules for preparing an environmental declaration for building boards, NPCR 010.
LCA -Report	LCA- Report for environmental product declarations for Steni façade panels – both Colour and Nature. Torhildur Kristjansdottir, Sintef Building and Infrastrucutre, November 2013.

	Publisher	Phone:	+47 23 08 80 00
epd-norge.no	The Norwegian EPD Foundation		
R The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Program holder	Phone:	+47 23 08 80 00
epa-norge.no	The Norwegian EPD Foundation		
epd-norge.no The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
	Norway	web	www.epd-norge.no
**	Owner of the declaration	Phone:	+47 33 15 56 00
steni	Steni AS	Fax	
	Berganmoen, 3277 Steinsholt, Lardal	e-mail:	info@steni.no
Building knowledge	Norway	web	www.steni.no
	Author of the Life Cycle Assessment	Phone:	+47 94 29 74 33
(S) SINTEF	Torhildur Kristjansdottir	Fax	
SINIEL	Sintef Building and Infrastructure	e-mail:	torhildur.kristjansdottir@sintef.no
•	Forskningsveien 3 B, 0314 Oslo, Norway	web	www.sintef.no/byggforsk